Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Infect Dis ; 225(9): 1561-1568, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1890948

ABSTRACT

Cases of coronavirus disease 2019 (COVID-19) have been reported in more than 200 countries. Thousands of health workers have been infected, and outbreaks have occurred in hospitals, aged care facilities, and prisons. The World Health Organization (WHO) has issued guidelines for contact and droplet precautions for healthcare workers caring for suspected COVID-19 patients, whereas the US Centers for Disease Control and Prevention (CDC) has initially recommended airborne precautions. The 1- to 2-meter (≈3-6 feet) rule of spatial separation is central to droplet precautions and assumes that large droplets do not travel further than 2 meters (≈6 feet). We aimed to review the evidence for horizontal distance traveled by droplets and the guidelines issued by the WHO, CDC, and European Centre for Disease Prevention and Control on respiratory protection for COVID-19. We found that the evidence base for current guidelines is sparse, and the available data do not support the 1- to 2-meter (≈3-6 feet) rule of spatial separation. Of 10 studies on horizontal droplet distance, 8 showed droplets travel more than 2 meters (≈6 feet), in some cases up to 8 meters (≈26 feet). Several studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) support aerosol transmission, and 1 study documented virus at a distance of 4 meters (≈13 feet) from the patient. Moreover, evidence suggests that infections cannot neatly be separated into the dichotomy of droplet versus airborne transmission routes. Available studies also show that SARS-CoV-2 can be detected in the air, and remain viable 3 hours after aerosolization. The weight of combined evidence supports airborne precautions for the occupational health and safety of health workers treating patients with COVID-19.


Subject(s)
COVID-19 , Aerosols , Aged , Health Personnel , Humans , Infection Control , SARS-CoV-2
2.
International Journal of Multiphase Flow ; : 103883, 2021.
Article in English | ScienceDirect | ID: covidwho-1525816

ABSTRACT

Human respiratory events, such as coughing and sneezing, play an important role in the host-to-host airborne transmission of diseases. Thus, there has been a substantial effort in understanding these processes: various analytical or numerical models have been developed to describe them, but their validity has not been fully assessed due to the difficulty of a direct comparison with real human exhalations. In this study, we report a unique comparison between datasets that have both detailed measurements of a real human cough using spirometer and particle tracking velocimetry, and direct numerical simulation at similar conditions. By examining the experimental data, we find that the injection velocity at the mouth is not uni-directional. Instead, the droplets are injected into various directions, with their trajectories forming a cone shape in space. Furthermore, we find that the period of droplet emissions is much shorter than that of the cough: experimental results indicate that the droplets with an initial diameter ≳10μm are emitted within the first 0.05 s, whereas the cough duration is closer to 1 s. These two features (the spread in the direction of injection velocity and the short duration of droplet emission) are incorporated into our direct numerical simulation, leading to an improved agreement with the experimental measurements. Thus, to have accurate representations of human expulsions in respiratory models, it is imperative to include parametrisation of these two features.

3.
Clin Exp Optom ; 105(2): 214-221, 2022 03.
Article in English | MEDLINE | ID: covidwho-1441828

ABSTRACT

CLINICAL RELEVANCE: Optometrists have been advised to wear face masks during the COVID-19 pandemic. This study examined whether face masks were equally protective against transmission of microbes. BACKGROUND: The aim of the current study was to examine the ability of face masks to reduce transmission of microbes in aerosols and during speech. METHODS: Different face masks, surgical, medical 3-ply and cloth masks with different layers were used. The masks were tested under the ASTM standard F2101-1 to measure their ability to reduce the transmission of aerosolised Staphylococcus aureus. Bacterial cells in different sized aerosols were captured on agar plates. The ability of masks to reduce the transmission of bacteria during speech over 30 cm was measured. Bacteria were captured in masks or on agar plates at a distance of 30 cm during the speech. RESULTS: All masks reduced the transmission of aerosolised S. aureus (p ≤ 0.007). The medical 3-ply and cloth masks with three layers reduced the transmission of S. aureus aerosols (3.3 µm) by 98% and surgical and seven-layer masks reduced this by 100%. An antibacterial silver mask showed significantly greater transmission of S. aureus in aerosols of 4.7 µm (16 ± 6 cells) and 3.3 µm (122 ± 66 cells) compared to all other masks (0-3 cells and 0-15 cells, respectively; p ≤ 0.016). Surgical and three-layer masks had significantly worse filtration of 1.1 µm aerosols than for other aerosol sizes. Wearing a mask reduced the transmission of bacteria during speech, but the inner surface of these masks became contaminated with 528-3060 bacterial cells. CONCLUSIONS: Face masks effectively reduce the transmission of microbes in laboratory tests. Face masks made with seven layers were very effective at stopping transmission of S. aureus in all aerosol particle sizes. However, face masks become rapidly contaminated during wear. If masks are to be re-used, they should be regularly replaced or appropriately washed.


Subject(s)
COVID-19 , Pandemics , COVID-19/prevention & control , Humans , Masks , SARS-CoV-2 , Staphylococcus aureus
4.
ACS Biomater Sci Eng ; 7(6): 2791-2802, 2021 06 14.
Article in English | MEDLINE | ID: covidwho-1275857

ABSTRACT

Cloth masks can be an alternative to medical masks during pandemics. Recent studies have examined the performance of fabrics under various conditions; however, the performance against violent respiratory events such as human sneezes is yet to be explored. Accordingly, we present a comprehensive experimental study using sneezes by a healthy adult and a tailored image-based flow measurement diagnostic system evaluating all dimensions of protection of commonly available fabrics and their layered combinations: the respiratory droplet blocking efficiency, water resistance, and breathing resistance. Our results reveal that a well-designed cloth mask can outperform a three-layered surgical mask for such violent respiratory events. Specifically, increasing the number of layers significantly increases the droplet blocking efficiency, on average by ∼20 times per additional fabric layer. A minimum of three layers is necessary to resemble the droplet blocking performance of surgical masks, and a combination of cotton/linen (hydrophilic inner layer)-blends (middle layer)-polyester/nylon (hydrophobic outer layer) exhibited the best performance among overall indicators tested. In an optimum three-layered design, the average thread count should be greater than 200, and the porosity should be less than 2%. Furthermore, machine washing at 60 °C did not significantly impact the performance of cloth masks. These findings inform the design of high-performing homemade cloth masks.


Subject(s)
COVID-19 , Adult , Humans , Masks , Pandemics , SARS-CoV-2 , Textiles
5.
Clin Infect Dis ; 72(10): e639-e641, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1232186

ABSTRACT

Choral singing has become a major risk during the coronavirus disease 2019 (COVID-19) pandemic due to high infection rates. Our visualization and velocimetry results reveal that the majority of droplets expelled during singing follow the ambient airflow pattern. These results point toward the possibility of COVID-19 spread by small airborne droplets during singing.


Subject(s)
COVID-19 , Singing , Aerosols , Humans , Pandemics , SARS-CoV-2
7.
BMJ Open Respir Res ; 7(1)2020 09.
Article in English | MEDLINE | ID: covidwho-760260

ABSTRACT

Face masks and respirators are the most widely used intervention measures for respiratory protection. In the wake of COVID-19, in response to shortages and lack of availability of surgical masks and respirators, the use of cloth masks has become a research focus. Various fabrics have been promoted with little evidence-based foundation and without guidelines on design principles for optimal performance. In these circumstances, it is essential to understand the properties, key performance factors, filter mechanisms and evidence on cloth masks materials. The general community might also need to decontaminate and reuse disposable, single-use devices as a last resort. We present an overview of the filter materials, filter mechanisms and effectiveness, key performance factors, and hydrophobicity of the common disposable masks, as well as cloth masks. We also reviewed decontamination methods for disposable respiratory devices. As an alternative to surgical masks and respirators, we recommend a cloth mask made of at least three layers (300-350 threads per inch) and adding a nylon stocking layer over the mask for a better fit. Water-resistant fabrics (polyesters/nylon), blends of fabrics and water-absorbing fabrics (cotton) should be in the outside layer, middle layer/layers and inside layer, respectively. The information outlined here will help people to navigate their choices if facing shortages of appropriate respiratory protection during the COVID-19 pandemic.


Subject(s)
Communicable Disease Control , Coronavirus Infections , Decontamination , Masks , Pandemics , Pneumonia, Viral , Betacoronavirus/isolation & purification , COVID-19 , Communicable Disease Control/instrumentation , Communicable Disease Control/methods , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Decontamination/methods , Decontamination/standards , Equipment Design , Humans , Masks/standards , Masks/supply & distribution , Medical Waste Disposal/methods , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , SARS-CoV-2
8.
Exp Fluids ; 61(8): 176, 2020.
Article in English | MEDLINE | ID: covidwho-662793

ABSTRACT

ABSTRACT: Respiratory activities such as sneezing generate pathogen laden droplets that can deposit in the respiratory tract of a susceptible host to initiate infection. The extent of spread of these droplets determines the safe distance between a patient and health care worker. Here, we have presented a method to visualize the droplets expelled by a sneeze using light-sheet illumination. This method of visualization provides images that clearly resolve the velocities of droplets with minimal overlapping trajectories, towards understanding their flow dynamics. Furthermore, we present the image processing techniques required to perform accurate Particle Tracking Velocimetry to understand the motion of expelled droplets. Flow fields are presented from applying this methodology over multiple sneezes which reveal that less than 1% of droplets expelled travel at velocities greater than 10 m/s and almost 80% of droplets travel at velocities less than 5 m/s. Furthermore, we observe that some droplets are generated by ligament breakup outside the mouth and some are generated within the respiratory tract.

SELECTION OF CITATIONS
SEARCH DETAIL